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Abstract

A ground based, microwave radiometer system is being completed at

IRL which will be used to measure mesospheric water vapor. The present

study addresses itself to the basic radiative transfer of this experiment

and to the interaction between the atmosphere and electromagnetic

radiation.

Using a classical mathematical analysis of the data inversion

process an estimation of the true information content of the received

data is produced. This process depends critically upon the structure

of the weighting functions as was anticipated.

The result of this study is that the present radiometer system

should have four clearly independent pieces of information per profile,

with a fifth piece possible, for realistic estimates of system errors.
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1. Introduction

Information on the vertical profiles of each element existing in

the atmosphere can provide a better understanding of the atmosphere. This

is especially true for the water vapor content which plays a dominant role

in photochemistry in the middle atmosphere (stratosphere and mesosphere).

Therefore, investigating the concentration of water vapor in the atmosphere

is very important.

There are two major ways to do the measurements: in-situ, and remote

sensing techniques. The vertical profiles of H20 in the lower atmosphere

can be determined by balloon sounding. However, in the upper atmosphere

where the H20 content is much less compared with the H20 in the troposphere,

contamination may cause difficulties in determining the correct amount.

Therefore, the remote sensing technique, which can allow us to study the

atmospheric region without disturbing it, is a very attractive solution.

Here we choose the microwave rather than the IR remote sensing technique

to investigate the H20 content in the upper atmosphere. The major reason

is that the characteristic spectrum of H20 has many more and closer spaced

absorption lines in the IR region than in the microwave region, and the

collisions among air molecules and gases will significantly broaden the

absorption bands, thus the overlapping among the absorption bands decreases

the vertical resolution. Besides, the microwave radiometer can detect at

lower power level and penetrate through clouds which are opaque to IR.

According to kinetic theory (Goody, 1964), the lines of the char-

acteristic spectrum of each molecule will be broadened both by collision

effects between molecules and by Doppler broadening. The former, depending

on the pressure of gas, dominates in the lower atmosphere and decreases

exponentially with height, while the latter, depending upon random

molecular motions hence temperature, contributes significantly only at
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levels above 80 Km. The H120 content in the atmosphere is found mostly

within the troposphere having only a very small contribution at higher

levels. The corresponding spectrum of this H20 concentration should be

much more smooth and broadened at lower levels, narrowing to a small

amplitude but much sharper peak at upper levels. Such differences in the

half-width of the spectral peak can allow a microwave radiometer to be set

up at ground level and measure the radiation being absorbed or emitted

from H20 throughout the atmosphere.

2. Radiative Transfer

Water vapor has only two characteristic lines existing in the microwave

region -- 22 GHz, 183 GHz. The 183 GHz line is much more intense but its

attenuation through the troposphere is so strong that it can only be used

from platforms aloft, such as by satellite through a limb viewing measure-

ment. For a ground-base microwave measurement of 1120, one must use the

rotational line centered at 22 Gliz. The vertical resolution is determined

by the spectral line width and the bandwidth of the radiometer, thus

setting the lower height limit of H-20 content one can determine. (The

radiometer in question is constructed with a filter bank centered at

22.235 GHz, covering a half width of 2.5 MHz, using 50 channels;

the predicted measurable height range is 50 to 85 Km.)

The wavelengths of the microwave region range from 10 cm to 1 mm,

which is in the Rayleigh-Jeans region of the Plank black-body function.

This provides a simple relationship between the emission power of the

medium and its thermal absolute temperature; that is, the emission power

is proportional to the temperature and also to the concentration of the gas

at that level. The opacity of the atmosphere to radiation is due to the

absorption and scattering of air molecules (through their vibrational and

rotational motions, and the interaction between air molecules and radiation

...............
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field may emit quantized energy. Since the scattering effects are much

smaller than the other two, only the absorptions and emissions are con-

sidered here. Assuming local thermal equilibrium (LTE) in the atmosphere,

the linear relationship between the measured intensity of the radiation

and the atmospheric (thermal) temperature allows one to specify the

radiative transfer in the following form, at frequency v:

TB(v) = Ts(v)e-t(v) + f T(v,s)'K(v,s)'e-T(v)ds (1)
h

T B(v) = the brightness temperature

T S(v) = the thermal temperature of an external source

T(v,s) = the kinetic temperature of atmosphere

K(v,s) = the total absorption coefficient

ds = the optical path length

and T() = f K(\,s)'ds = the optical depth (or opacity),
h

On the right hand side of eq.(l), the first term is the transmission of

external radiation S and the second term involves the emission of the medium.

In order to simplify the nonlinearity between the absorption coefficient

and the optical path, some approximations can be made. Consider the atmosphere

to be a series of homogeneous, 1 Km thick layers, and take the average value of

temperature and pressure in each layer to estimate the cross section of the

constituent (a). The refraction effects in the atmosphere which have been

calculated are too small to be included (Longbothum, 1976). In this case,

the effective emission of the medium (in the radiative transfer equation

which involves the integration over the range of interest)can be written as

the sum of the contributions from each layer attenuated through all the

layers below. That is:
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fT(v,s)K(v,s) e-T(V) ds I Z (T exp -E T(V's )J T(VS) (2)

h j=l

and thus where T. is the average temperature in the layer i, and
1

s(vh)
N N 'i+l N

r(V) = 1 T(v,s i ) f K(v,s)'ds Z I [K(vi+l)+K(v,si)]'As
i=l s(v,h i) i=l 2 (3)

where N is the number of layers.

Therefore, the total brightness temperature is:

NN Ni-

TB(V )  S ) exp -Z T(%,s + Z T.(v) exp - T (V, S l T('si)
B i=1 il - (4)

For an absorption experiment, the second term on the right hand side

of the eq. (4) is negligible. In order to avoid the uncertainties in the

solar temperature at the wavelengths of the microwave region, the method

of calculating the ratio of brightness temperature at two different zenith

angles is preferred. Operating the ground base radiometer at zenith

angle (4) lower than 800, allows one to approximate the spherical earth

geometry by a plane earth, i.e. ds can be written as sec 0.dz; then we

get:

N _ ln(TB/TB )
E T (v'z.) (5)

j=l ,J (sec. 42 - sec. l)

where we define:

j+l (V)

T (v,z.): = K(v,z) dz

Jz.(V)
3

and the superscript 1 and 2 stand for the cases at different zenith

angles 01, and 02. The quantity of the right hand side of the eq. (5)

can be determined directly through measurements, thus defined as g(v)

or g,, where i stands for the different frequency dependence.
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Generally, the absorption coefficient K(v,s) for optical path s at

frequency v can be written as the product of the volumetric concentration

of the constituent n(s) and the total extinction cross section O(v,s).

The weak dependence of K(v,s) on n(s) has been tested over a range

which corresponds to volumetric mixing ratios of 1 to 18 ppm. K(v,s)

varies only from 0.992 to 0.995 Km- 1 over this range to the first

approximation it is separable. Thus we apply the mean value for each

layer and the optical path becomes

zj+l(v) [(v,z.) + a(Vzj+ I )

T(v,z.) = K(v,z) dz = [2 (z). 2 ].Az.1  (6)
z.Az

SWF (z.)*n(z.)
ii J

Az)+]aniscleth
where WFi(z ] ) is defined as - [a(v,z.) + a(,zO+ I) and is called the

ith weighting function. Therefore the relation becomes.

N
g E (z ).n (z (7)

j=l WFi(zJ zj)

Consider the emission experiment; the second term on the right-

hand-side of eq. (1) must then dominate. This term can be approximated

as:

N -TVSM i-l S)l 8
T B(V) = E T (l-et(V'si ).exp.[ E T(v,s.) + r(v,s.)] (8)

B i=M+l i j=l i j=m+l

whei; T 1 (v) = the upper atmospheric contribution to the brightness temperatureB

in which we are interested; thus equals the total brightness temperature, T Bv),

minus the lower atmosphere contribution which can be thought of as a base

line (and is assumed to encompass layer 1 to layer M). Since T(v,s )<<l

M i-i i

and E T(v, s) >> E T(v, s1), the equation becomes:
j-1 j=M+l
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N M AsT ()=~ - - T(V,s.) s+
TB() T+i exp j= " -2-" [C(V's) + aG('Si+l)]" n(si)

N-E WF (V s ) d• n (s )  (9)
i=M+l

And here WF(v,si) for the emission case corresponds to

N (NN exp- E T(v,s. As iE .ex j-- J [o(V' s) + a (V' Si)]

i=M+l 1. 2 •)s

It can also be written in a more general form asz

N
g = E WFi(S ).(S.) 0.0)

j=M+l

where i stands for the frequency dependcnce, and s. = z. • sec . WithJ 1

an appropriate inversion method, the water vapor content (n(zi)) in either

case can be determined.

3. Information Content

Generally, an indirect remote sensing measurement has the following

form:
b

gi= f ki(x)'f(x)dx (11)
a

It relates measurement data g1 to the inaccessible profile f(x) through

the proper weighting function k.(x) (or kernel, as stated in mathematical1

terms) distributed over the region [a,b] in which we are interested. The

different i usually represent different frequencies at which the measurement

has been made; and ki(x) can be some kind of optical transmission functions.

However, in using most indirect sensing techniques the atmospheric

measurements show a certain degree of correlation which leads to the

question of the benefit in taking more data points. For example, if

dependence exists among the measurements that may allow one of the

measurements to be written as a linear combination of the others; such

ALL,
S.-- --~

S ..--* -. - - .i



a measurement is said to be predictable. If the value predicted is

within some uncertainty on-velope which is less than the experimental noise

level, it implies that this valve can be predicted better than

measured (within the experimental accuracy). In this case, it would be

redundant to continue the measurement. Therefore, it is worthwhile to

investigate the actual "information content" of such a measurement.

As given by the relationship shown in eq. (11), the dependence of

measurements usually comes from the physical properties of the kernels,

which may not all be linearly independent for all f(x). In this case,

investigating the degree of indpendence among kernels will correspond to

finding the independence Of the measurements, thus to determine the extent

of the information contained. There are two advantages of looking into

the independence of the kernels. First, in view of the cost of adding and

analyzing more data points, determining the independence of kernels (and

thus the usefulness of thos". added measurements) can be done before the

measurements have been taken. The same process which provides information

content can also assist one in locating from which channels the information

comes, thus avoiding redundant measurements. Secondly, in view of re-

solution, the closer the relationships among the kernels, the more

difficult will be the inversion of the profile of f(x). To make this

point clear: note that the integral in eq. (11) can be approximated in

numerical quadratic summation form, thus can be written in matrix form

as G = KF, for a finite set of data points and finite measurement

intervals. Highly dependent kernels will make the determinent of the

kernel matrix very small. Therefore, when one wishes to invert the

matrix K in order to find the unknown profile F as in K-1G =F, the error

(including the truncation error of the computer) will be magnified so

much that the information can no longer be obtained. Under such

circumstances. soecial constrained techniques may be considered.
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The theory of information content of an experiment is solely based

on the presence of noise in the experiment and the nature of the kernels.

In principle, one is looking for a set of a's, which are not all zero
N

simultaneously, such that E ai ki(x) = 0. Then one of the kernels
i= I

can be written as a linear combination of the others, thus it is predictable.

However, the above summation may not vanish in the general case because

there exists some uncertainty, both experimentally and in the numerical

approximations adopted. Hence instead, we search for the set of a's that
N

minimizes E a.k.(x) and subjects them to a chosen contraint, say
N i=l 13

E a12 = 1. (The absolute magnitudes of the a's are irrelevant.) As
i=l
long as the summation is less than or equal to the noise level for all x

in [a,b], one kernel can be predicted within the experimental accuracy.

Thus the information provided by this kernel will be lost in the noise,

and the number of independent pieces of information must be reduced by

one. An appropriate method to minimize such a quantity (which is a

function of x) is to look for the minimum values of its quadratic formJN
q = aiki(x)1 2 dx, this can be written in vector notation as:

i=l

where a is not a function of x, and a, k(x) are column vectors. C is

the covarience matrix of J, C = [J.(x) k*(x) dx]. Applying the eigenvalue

theorem (Courant and Hilbert, 1953) subject to the constraint that
N
E ai 2 = 1, the extremum values of q are given by Xi, the eigenvalues

i=l

of the covarience matrix C, if is chosen to be the corresponding

normalized eigenvectors .i" Thus C = UAU* and q = C t - i UAU* Xii

where U, A are eigenvector and eigenvalue matrix, respectfully. Therefore,

the smallest eigenvalue Xn provides the minimum value of q and the magnitude



N
of E a kW(x) for all x in (a,bl is -. (Since the covarience matrix

C is a positive definite symmetric matrix, the corresponding eigenvalues

are all positive and non zero.) If one of the eigenvalues, X, is smaller

than the estimated measurement plus computational error, the number of

independent kernels or information content should be decreased by one.

If p of the eigenvalues are smaller than the noise level, the number

should be decreased by p.

The above statement can be shown clearly though the effect of k i(x)

in gi Now consider the error ci contained in the measurement gi as given

in eq. (11) b

gi + i =i ki(x) f(x) dx (13)
a

Assuming , is predictable, then the corresponding prediction of g Z can

be written as a linear combination of the other measurement values gi, as
N

in g (pred.) Z (aigi).The measurement value g can be calculatedng£ aped) ai-li

by multiplying eq. (13) through by a, summing all the i's, and readjusted

the terms, we get:

F N a. I = -N ag. + { N
9Z a i.l i a i=l 1 a aki(x)9 ]. f (x)d}

I i*2 (14)

Apparently the first term on the right hand side of eq. (14) is g Z(pred.) (an

estimate of g 9 ). In this case, one can estimate g Z closer than one can

measure it, if the second term on the right hand side of the eq. (14) is

less than or equal to the error term (the second term) on the left hand

side of the equation, i.e. if

ib [E aiki (x)1f(x)dx[J j aicil (15)

a i i

Applying the Schwarz's inequality and the mean value theorem on the left

hand side of the inequality, eq. (15) we find that:
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bN bN
I f E aiki(x)f(x)dxl24If E aiki(x)dxl2.lfm(X)1

2

ai=l aiml
bN

The minimized quantity, If E aiki(x)dxl2 is the smallest eigenvalue
a i=l

X of the covarience matrix C multiplyed by a constant which is determined by the
m

integral limits. Thus, if If (x) 12 has order of magnitude one, and with a
m

properly adjusted integral scale [0,1], the upper bound of this quantity

would be .m

Again, applying the Schwarz's inequality on the right hand side of

eq. (15) above:

JZ ai1C112,<JZ ai21.IECi2J

i i 1 N

for an independent randomlydistributed error c., 1E: 21 = N Frm 12

1i=l m

Generally speaking, for a relative error E 'E Ei21 = IkI2. Hence, it is

-
clear that if X is "less than" IkI2 (or it should be said "much less than",

m

for there is considerable uncertainty when they are the same order of

magnitude), the noise to signal ratio is large enough that information

cannot be obtained.

Now it is more interesting to know exactly which one or ones of the

kernels is predictable: Surely the best approximation can be made by

choosing the weakest response kernel. That is, for a given very small

eigenvalue Xm' the correspondent linear combination of kernels can be

Im

17



approximated to zero. Therefore, the kernel k.,whose coefficient has the
J

largest value can be thought of as the most weakly represented base function.

Therefore, the corresponding normalized kernal, k., should be the least

useful.

To make the case simple, and to have a direct measure for X, proper

scaling for g, k, and f is necessary and does not change the relationship

between them. On the other hand, it provides a convenient way to estimate

the relative error. As pointed out earlier, gi can be scaled having an

order of one, then the E. are the relative errors and IJg N (the number

of channels). Scaling can also be done such that JfJ2-, 1 and the kernels

are normalized. Then eq. (13) can be written as:

gi i b f(x)]dx (16)a + a (a) f k i(x)'[ xld

a

Where a, a are proper scaling factors.

Also, the integral limits can be rescaled from 0 to 1. Without proper

scaling there can be confusion between the comparison of eigenvalues and

the noise levels, which has been pointed out by Twomey (1974) in his earlier

papers.

Such eigenvalue techniques can also be used to directly analyze the

unknown function, f(x), by introducing a new set of orthonormal functions

6(x) on which f(x) can be projected, then f(x) = Z . .(x). However, such.JJ

a new orthonormal set of W(x) must satisfy eq. (ii) and should be constrained

to ki(x). Therefore in general, 6i1(x) is chosen as a linear combination of

all the kernels, and the normalization constraint will determine the

correspondent coefficients. It turns out that the best choice of 6.(x) isN J

1 N
Z U k , where U is the ith element of the eigenvector U associated
j i - I i j i i j

with eigenvalue X of the covarience matrix C. Written in matrix form

Ij
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it will become (x) =UA -k(x). With this substitution in the equation

(11), one obtains:

-1/2
A .U*'g (17)

and f(x) becomes:

-1
f(x) = k*(x).U.A "U*g (18)

Obviously, small eigenvalues involved in such an inversion for f(x)

will make it very unstable. But it provides a straightforward way to

investigate the error magnification which is also a criterion in determining

the information content through deleting the measurements which have an

excessive error magnification. (Detailed descriptions can be referred in

Twomey (1977.)

Although we were concentrating on analyzing the information content

of the kernels here, the same method can be applied directly to the

measurement data, which has been done in many cases (e.g. Mateer, 1965). If

there is one eigenvalue which is less than Id2, one measurement can be predicted

better than measured and the information content should be reduced by one.

If there are p eigenvalues which are less than 1FI2, there should be p

redundant measurements. For a total of N measurements, the number of pieces

of independent information will become (N-p).

4. Results and Discussion

The previous analysis has been applied to investigate the information

content of the spectral output of a microwave radiometer used to detect

the H20 content in the stratosphere and mesosphere. This spectral output

totals 49 channels, each separated by 50 KHz, ranging from 22.2362798 GHz

to 22.2338798 Ghz, and centered at 22.235078 GHz. Since symmetry

exists about the center frequency, the information content analysis need

only to be done for 25 channels. The altitude range was chosen from 50 Km

* .. .
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to 86 Km., which represents thirty-six,l Km layers.

Let us first consider the emission experiment case. The 25 kernels,

which have been normalized to unit area for convenience (Fig. 1), were used

to do the eigenvalue and eigenvector analysis of their covarience matrix C.

The resulting eigenvalues, as listed in Table 1 (only for the ones whose

magnitudes are greater than 10-9), show that for a given 1% relative

r.m.s. error, four independent pieces of information could safely be drawn,

however the fifth may be possible as well. The rapidly decreasing magnitude

of the eigenvalues indicates that improving experimental accuracy doesn't

provide much more, if any, new information. In this case, many of the 25

measurements will be redundant.

The kernels which contribute the most informations are kl, k1 3, k2 2,

k2 5, and to a lesser extent k24, where the subscripts represent the

corresponding frequencies: 22.2338798, 22.344798, 22.2349298, 22.2350798

and 22.2350298 GHz, respectively (Table II). Their relationship with height

have been plotted in Fig. 2. Since the original kernel functions are reasonably

smooth and very much overlapped (as shown in Fig. I), it would not be

surprising that they have such limited independence. This means the

measurement can be done as well based on these four (or five) channels as

with all the original 25 channels to within an experimental uncertainty

of about 1%. To make this point more explicitly, the same eigenvalue

analysis was applied to an arbitary set of ten channels; specifically

channel numbers 2, 5, 8, 11, 14, 17, 20, 23, 24 and 25 were chosen. The

results are also listed in Table I. For the same noise level, apparently

four pieces of information is derivable. Under such circumstances, it is

obvious that making more measurements does not improve, by much, knowledge

concerning the inaccessible profile f.

~~!
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In Figure 3 we show that the number of independent pieces of

information which can be derived for various experimental error levels. If

the error lies beyond 5%, there will be only two pieces of information

that could be inferred from such 25 measurements. Therefore, even though

the discussion of error levels cannot be precise, the number of independent

pieces of information is still quite apparent as long as the signal to

noise ratio is much greater than 1. Therefore, increasing the number of

measurements or improving measurement accuracy may not increase the

information content considerably.

5. Zenith Angle Effects

The discussion above was based upon calculations for zero zenith

angle operation. In order to increase the signal to noise ratio, the

radiometer should be operated at lower elevation angles (i.e. to obtain

a longer slant optical path). Therefore, the same analysis has also been

applied to the case of the same 25 channels, but with a 700 zenith angle.

The resulting eigenvalues were extremely close to the first case, thus

for the same relative error it should provide the same number of independent

pieces of information. However, the channels which contribute the most

information do tend to be redistribed slightly toward the center frequency

channel. Since the discussion of information content is based on the

competition between the relative error level and the eigenvalues of the

measurement kernels, one can only expect that lowering the elevation angle

will reduce the noise to signal ratio and may provide one or more additional

pieces of information.

The same 700 zenith angle dependence for the absorption case has

been done, and the previous argument still holds.
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6. Summary and Conclusion

The information content of a microwave radiometer experiment has

been investigated. Since the kernel (or weighting) functions are

reasonably smooth and very much overlapped, the number of independent

pieces of information is much less than the total number of possible

measurement channels. This means that if one tries to use all the channels

in performing the observation, many of the measurements would be redundant.

As for how many independent pieces information can be drawn, this depends

on the relative error of the whole experiment which can be reduced by

lowering the operating elevation angle or improving the instrument itself.

One may argue that taking more data points certainly has some value, but

such improvements may not be significant enough to provide additional

information; in addition the cost of taking and processing more measure-

ments may be too high. Also, the difficulties of the actual inversion

process are magnified by highly dependent kernels, thus it is worthwhile

to examing the information content and use such results as a guide.

For the current Penn State system four, or perhaps five, independent

pieces of information are attainable with maintenance of reasonably

system accuracy.

I
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Table I

(Eigenvalues X and Corresponding Channel/Kernel Numbers k)

Order of A for 10 measurements for 25 measurements

A 1 k xA( k

1 2.99 x 10~ (k25) 8.40 x 10'1 ( 2 5 )

2 9.81 X 10-2 (k2 ) 1.33 x 10-1 (kj)

3 1.73 x 102 (k23) 3.66 x12 (k2 2 )

4 3.17 x 10-3 (k17) 5.69 x 10-3 (k13)

5 3.47 X 10-4 (k24) 7.93 X 10-4 (k24)

65.64 x 10 (k20) 1.1xl~ (k,8)

7 5.34 x 10-6 (k5) 1.37 x 10-5 (k23)

8 1.48 x 10-7' (k14) 1.34 x 10-6 (k3)

9 2.02 x 10-9 (k1j) 1.06 x 10-7 (k2 l)

10 *6.78 x 10- (k10 )

*Eig nvalues not included in this Table have magnitude much less than

10-
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Table II (Channel/Kernel Frequency)

Channel/Kernel Frequency Frequency Offset
Number (GHz) (MHz)

k, 22.2338798 1.20

k2  22.2339298 1.15

k3  22.2339798 1.10

k4 22.2340298 1.05

k5  22.2340798 1.00

k6  22.2341298 0.95

k 7  22.2341798 0.90
Ik

k8  22.2342298 0.85

k9  22.2342798 0.80

kl 22.2343298 0.75

k12 22.2343798 0.70

k13 22.2344298 0.65

k14 22.2344798 0.60

k 22.2345298 0.55

kj5 22.2345798 0.50

k16 22.2346298 0.45

k17  22.2346798 0.40

k 18  22.2347298 0.35

k19  22.2347798 0.30

k20 22.2348298 0.25

k21 22.2348798 0.20

k22  22.2349298 0.15

k2 3  22.2349798 0.10

k24 22.2350298 0.05

k 2 5 22.2350798 0.00
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Table II (Channel/Kernel Frequency)

Channel/Kernel Frequency Frequency Offset

Number (GHz) (MHz)

k,22.2338798 1.20

k222.2339298 1.15

k322.2339798 1.10

kL4 22.2340298 1.05

k522.2340798 1.00

k622.2341298 0.95 1
k722.2341798 0.90

k822.2342298 0.85

k922.2342798 0.80

ko22.2343298 0.75

k1l 22.2343798 0.70

k12  22.2344298 0.65

k322.2344798 0.60

k422.2345298 0.55

k 22.2345798 0.50

k622.2346298 0.45

k17  22.2346798 0.40

k18  22.2347298 0.35

kj9  22.2347798 0.30

k022.2348298 0.25

kl22.2348798 0.20

k222.2349298 0.15

k2 3  22.2349798 0.10

k422.2350298 0.05

k522.2350798 0.00
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